
U.S. Government work not protected by U.S. copyright

 1

Increasing Flight Software Reuse with OpenSatKit
David McComas

NASA
Goddard Space Flight Center

8800 Greenbelt Rd.
Greenbelt, MD 20771

301-286-9038
David.C.McComas@nasa.gov

Abstract— In January 2015 the NASA Goddard Space Flight

Center (GSFC) released the core Flight System (cFS) as open

source under the National Aeronautics and Space

Administration (NASA) Open Source Agreement (NOSA)

license. The cFS is based on flight software (FSW) developed

for 12 spacecraft spanning nearly two decades of effort and it

can provide about a third of the FSW functionality for a low-

earth orbiting scientific spacecraft. The cFS is a FSW

framework that is portable, configurable, and extendable using

a product line deployment model. However, the components

are maintained separately so the user must configure,

integrate, and deploy them as a cohesive functional system.

This can be very challenging especially for organizations such

as universities with minimal FSW development experience that

are building CubeSats. This paper describes the OpenSatKit[2]

that was developed to address the cFS deployment challenges

and to serve as a cFS training platform for new users.

OpenSatKit provides a fully functional out-of-the box software

system that includes NASA’s cFS, Ball Aerospace’s command

and control system COSMOS, and a NASA dynamic simulator

called 42. The kit is freely available since all of the components

have been released as open source. The kit runs on a Linux

platform, includes eight cFS applications, several kit-specific

applications, and built in demos illustrating how to use key

application features. It also includes the software necessary to

port the cFS to a Raspberry Pi and instructions for configuring

COSMOS to communicate with the target. All of the demos

and test scripts can be rerun unchanged with the cFS running

on the Raspberry Pi.

OpenSatKit can serve two significant architectural roles that

will further help the adoption of the cFS and help create a

community of users that can share assets. First, the kit is being

enhanced to automate the integration of applications with the

goal of creating a virtual cFS ‘App Store’. Second, a platform

certification test suite can be developed that would allow users

to verify the port of the cFS to a new platform. This paper will

describe the current state of these efforts and future plans.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. CORE FLIGHT SYSTEM ... 1
3. OPENSATKIT .. 4
4. FUTURE WORK ... 7
5. SUMMARY ... 7
ACKNOWLEDGEMENTS .. 7
REFERENCES... 7
BIOGRAPHY .. 8

1. INTRODUCTION

The NASA Goddard Space Flight Center (GSFC) released

its Core Flight System (cFS) as open source in 2015[1]. The

cFS is a very mature and highly reliable FSW framework

that is being used on several operational NASA Class B

missions. This paper describes the cFS architecture and how

the cFS platform abstraction and application components are

independently configuration managed. It also describes how

the cFS’s open architecture requires either an end user or a

distributor to configure and integrate the components into an

operational system.

OpenSatKit[2] is presented as a freely available open source

solution to the cFS integration and deployment problem.

The kit includes eight preconfigured cFS applications and

provides tools for creating and integrating additional

applications. Starting with an operational flight-ground

system makes the FSW developer’s job much easier.

Developers can focus on tailoring the kit’s cFS components

to their needs, adding new mission-specific applications,

porting the cFS to their target platform, and verifying the

system.

2. CORE FLIGHT SYSTEM

This section provides an overview of core Flight System

and describes architectural highlights, its open architecture,

and the product model.

Overview

The core Flight System[1] (cFS) is a reusable flight software

(FSW) framework developed by the NASA Goddard Space

Flight Center’s (GSFC) Flight Software Systems Branch

(FSSB) over the past 15 years. The cFS was developed

because previous GSFC FSW reuse efforts had limited

success in reducing cost and schedules. Early reuse efforts

used a “clone and own” approach where a new project

would copy FSW components from one or more previous

missions based on functional requirement similarities. This

informal source-code based approach to reuse proved

difficult for managers to control the scope of the changes

and as a result, a comprehensive verification and validation

effort had to be performed for the new mission which

severely limited the cost savings. In addition, since FSW

components were not configuration managed independent of

projects, component quality did not necessarily increase

https://ntrs.nasa.gov/search.jsp?R=20180001888 2020-03-11T05:00:33+00:00Z

 2

because a single lineage for each component was not

maintained.

To meet these challenges the FSSB formed a team of senior

engineers to perform a structured heritage analysis across a

decade of missions. The initial funding was from non-

mission sources which allowed the engineers to participate

uninhibited by near-term mission schedules. The diversity

of the heritage missions (single string vs. redundant string,

varying orbits, different operational communication

scenarios, etc.) provided valuable insights into what drove

FSW commonality and variability across different missions.

The team took the entire FSW life-cycle into consideration,

including in-orbit FSW sustaining engineering, as they

performed their analysis. The team identified system and

application level variation points to address the range and

scope of the flight systems domain. The goal was to enable

portability across embedded computing platforms and to

implement different end-user functional needs without the

need to modify the source code.

The cFS uses compile-time configuration parameters to

implement the variation points. Figure 1 below shows the

results using a classic software engineering “V-model”. The

shaded components are cFS artifacts and the <p> notation

indicates a parameterized artifact.

Figure 1. The cFS-Based Project FSW Lifecycle

This lifecycle product line approach dramatically increased

the number of reusable artifacts and changed how future

missions would approach their FSW development efforts.

Architectural Highlights

While a majority of the heritage analysis focused on FSW

functional features a significant and conscious effort was

made to address the cFS’s architectural quality attributes[3].

Quality attributes are hard to quantitatively trade but they

can ultimately determine the success or failure of a software

product line. The prominent quality attributes balanced by

the cFS include portability, performance, reusability,

usability, scalability, interoperability, verifiability,

complexity, and predictability.

Design Decisions—Design meetings, trade studies, and

code reviews were used to create a consistent architectural

quality attribute balance. Two key trade studies were

performed to determine whether to support file systems and

whether to support both static and dynamic linking.

Figure 2. The cFS Layered Architecture

At the time of the cFS formulation these were difficult trade

studies because to date no GSFC missions had flown a file

system and dynamic linking wasn’t supported by all of the

operating systems being considered by new missions. The

results of the trade studies were to include file system

support and to support both static and dynamic linking.

These decision have proven to be vital to the cFS’s

reusability, usability, and interoperability which has been

very beneficial to the ever-expanding user base.

API-Based Layers—Two additional pivotal cFS

architectural features are the Application Program Interface

(API)-based layers and the definition of an application as a

distinct well-defined architectural component. Figure 2

above illustrates the three distinct layers and identifies

which components have been released as open source.

Layer 1 contains the Operating System (OS) and Board

Support Package (BSP) and access to the functionality in

these components is controlled through two APIs: the

Operating System Abstraction Layer (OSAL[3]) and the

Platform Support Package (PSP).

The OSAL and PSP APIs provide a platform independent

(OS and hardware) interface that provides common OS and

BSP services. The Platform Abstraction Layer has been very

successful in decoupling the higher layers from hardware

and OS implementation details allowing the cFE and

applications to be run unchanged on a wide range of

platforms.

Layer 2 contains the core Flight Executive (cFE) that

provides five services that were determined to be common

across most FSW projects. The APIs in Layers 1 and 2 have

been instrumental in the cFS’s success across multiple

 3

platforms and the cFE API has remained functionally

unchanged since the launch of the Lunar Reconnaissance

Orbiter in 2009. Together the APIs define an application

runtime environment for the applications[3] in Layer 3. The

application layer contains thread-based applications as well

as libraries (e.g. linear algebra math library) which can be

shared among multiple applications.

Application as a Plugin—The second pivotal architectural

feature is the definition of an application as a plug-in

component. The cFE enables this feature by providing a

core set of services, a runtime environment, and a tool suite

for building and hosting flight software applications.

Core Services—The core services include a Software Bus

(messaging), Time Management, Event Messages (alerts),

Table Management (runtime parameters), and Executive

Services (startup and runtime). The Software Bus provides a

publish-and-subscribe Consultative Committee for Space

Data Systems (CCSDS)[6] standards-based inter-application

messaging system that supports single and multi-processor

configurations. Time Management provides time services

for applications.

The Event Message service allows applications to send

time-stamped parameterized text messages. Four message

classes based on severity are defined and filtering can be

applied on a per-message and per-class basis.

cFS Tables are binary files containing groups of application

defined parameters that can be changed during runtime. The

Table service provides a ground interface for loading and

dumping application tables.

Runtime Environment—Executive Services provide the

runtime environment that allows applications to be managed

as an architectural component. All of the services contain

tunable compile-time parameters allowing developers to

scale the cFE to their needs. The cFS manages non-volatile

storage using a file system and it uses a script file to

determine which application object files should be loaded

during initialization. In turn applications subscribe to cFE

services during their initialization.

On-Orbit Maintenance—Since cFE resources are managed

on a per-application basis the cFE supports starting,

stopping, and loading individual applications during

runtime. This allows applications to be developed

independent of the platform, very similar to how apps are

managed by smart phones. It can also simplify on-orbit

maintenance as demonstrated by the Global Precipitation

Measurement (GPM) FSW sustaining engineering team in

the fall of 2014 when they successfully replaced the file

transfer application without disrupting normal science

operations.

Open Architecture

The cFS is an open architecture that defines a framework

with a product line deployment model. Separately

configuration managed components are integrated into an

operational system.

Configured Items—Working up the layers in Figure 2, the

configured items are the OSAL, the cFE, and each

application. PSPs are developed for specific hardware-OS

platforms and are currently bundled with the cFE.

Configuration parameters are tuned on a per-component

basis as well as for the integrated system.

Table 1 below provides metrics for the cFS as it is being

used on GSFC’s GPM mission that launched on February

27, 2014. These metrics are representative of the current

versions of the cFS components. They have only undergone

minor updates since the final build of GPM, so they provide

a good reference point for future missions.

Table 1. GPM cFE/Application Metrics

cFE/

App

Logical

Lines of Code

Configuration

Parameters

cFE 12,930 General: 17

Executive Service: 46

Event Service: 5

Software Bus: 29

Table Service: 10

Time Service: 32

CFDP 8,559 33

Checksum 2,873 15

Data Storage 2,429 27

File Manager 1,853 22

Health & Safety 1,531 45

Housekeeping 575 8

Limit Checker 2,074 13

Memory Dwell 1,035 8

Memory Manager 1,958 25

Scheduler 1,164 19

Stored Command

(124 command
sequences)

2,314 26

Configuration Parameters—A configuration parameter is

defined with either a mission scope or a processor scope.

For example, the maximum length of an event message is

defined at the mission level and the “include local event

log” is defined at the processor level.

The metrics in Table 1 above are provided to give a general

sense of the level of tenability. It’s hard to gauge the

configuration complexity with simply a number because the

parameters span a large functional range from a simple

default file name to a system behavioral definition like the

time client/ server configurations.

 4

Figure 3. The cFS Product Model

Product Model

The cFS has successfully demonstrated many of the initial

architectural quality attributes, but usability which in turns

impacts reusability has been challenging. NASA does not

maintain a component library with a standard deployment

model where users can select, tune, and integrate

components into an operational system. A private company

such as Apple that controls the hardware and software

platform for apps in a very large ecosystem can create a

viable market place. Government organizations operate

under different financial models and legal constraints

therefore a centralized government controlled library is not

feasible. The cFS situation is actually more complex than

Apple’s because the cFS framework supports an expanding

number of platform abstractions as well as apps. As new

Platform Abstraction Layers are created, who should certify

them and maintain them? Similar questions need to be

answered regarding apps.

The cFS has evolved from a NASA Goddard vertically

integrated platform[1] to an open source ecosystem[4]

resulting in the cFS product model shown in Figure 3 above.

The NASA multi-Center Configuration Control Board

(CCB) controls the cFS Framework that contains the

Platform Abstraction Layer APIs, a limited set of

implementations of those APIs, the cFE, test applications,

build tools, and specifications for developing OSALs, PSPs,

and applications. The CCB could be thought of as an API

standards board with reference implementations.

Independent of the CCB, NASA has established catalogs of

cFS components and distributors[5]. NASA does not vet the

suppliers listed in the catalogs. Distributors combine the

cFS Framework with additional cFS components to create

functional systems. OpenSatKit serves as a cFS distribution.

3. OPENSATKIT

This section provides an overview of OpenSatKit, and

describes cFS application management and system

integration and verification.

Overview

OpenSatKit provides a fully functioning flight-ground

system running on Ubuntu Linux 16.04 LTS[2]. Currently

the installation script only supports Ubuntu Linux, but the

kit is designed to run on other Linux platforms. The starter

kit components are shown in Figure 4 below. Ball

Aerospace’s COSMOS[6], a user interface for command and

control of embedded systems, is used as the ground system.

The cFS running on Linux provides a desktop FSW

component. The 42 Simulator[7] provides a simulation of

spacecraft attitude and orbit dynamics and control. All of

these components are freely available as open source

software.

Figure 4. Starter Kit Block Diagram

 5

Launching OpenSatKit—OpenSatKit is started by launching

COSMOS from the cfs-kit/cosmos directory. A customized

COSMOS Launcher Graphical User Interface (GUI)

appears. The customized launcher is the standard COSMOS

Launcher with the addition of a cFS Starter Kit button as

shown in Figure 5 below.

Figure 5. Custom COSMOS Launcher

When the user selects the cFS Starter Kit icon, COSMOS’

Command and Telemetry Server and Telemetry Viewer

tools launch, as they are required by the kit. The OpenSatKit

main page shown in Figure 6 below also opens.

Figure 6. Starter Kit Main Page

GUI—The main page layout reflects the primary goals of

the kit: provide a complete cFS system to simplify the cFS

learning curve, simplify application development and

integration into a cFS system, and assist in porting the cFS

to a new platform. The main page has two tabs: Home and

Demo. The Home tab provides buttons to perform all of the

kit’s functions. The Demo tab provides preconfigured

demonstrations for most of the Home tab’s functions.

Home—The Home tab is divided into four sections: (1)

System, (2) cFS-Functions, (3) Kit-Tools, and (4) Event

Messages. The System section allows the user to start the

cFS and perform some simple system level operations to

ensure that the system is functioning properly. Each button

in the cFS-Functions section opens a command and

telemetry page that allows the user to focus on a particular

cFS functional activity that requires one or more apps. For

example, the File Management page (Figure 7 below) is

used to manage onboard directories/files using the File

Manager (FM) app and transfer files between COSMOS and

the cFS using the Trivial File Transfer Protocol (TFTP) app.

 6

Figure 7. File Management Page

Built-In Demos—The Demo tab contains a demo for each of

these functional areas. The cFS-Function pages and

corresponding demos help users conquer the cFS learning

curve. In addition, the page definitions and underlying Ruby

scripts provide examples that users can build upon for their

mission-specific applications.

Kit-Tools—The Kit-Tools section provides tools that assist

the user with verifying a platform, evaluation a platform’s

performance, integrating additional applications to the kit,

and porting the cFS to a new target. The current kit includes

a Raspberry Pi target.

cFS Application Management

The application layer is where the majority of the cFS

scalability and extendibility occurs. Users create new

mission FSW by partly or completely reusing existing cFS

compliant apps and combining them with apps that are

developed specifically for the mission. Just as the cFE

provides common FSW services, there is a set of apps that

provide common higher level functional services. Figure 8

below shows the minimal context for a user app on a single

processor system. The Scheduler (SCH), Command Ingest

(CI), and Telemetry Output (TO) apps provide the higher

level services.

Figure 8. User Application Context

Apps must have the ability to receive commands from and

send telemetry to the ground system. The Command Ingest

app receives commands from the ground and sends them on

the software bus. The software bus uses the command

message identifier to route the command to the app that has

subscribed to the message id. An app also generates one or

more telemetry packets and sends them on the software bus.

The Telemetry Output app uses a table to determine which

message IDs to subscribe to and how often to forward them

to the ground system.

Scheduler App—Users have multiple mechanisms for

controlling the execution of an application. The Scheduler

app (SCH) provides a time-synchronized mechanism for

scheduling application activities. The Scheduler app uses a

table to define time slots to schedule the sending of a

message that users can use to initiate an activity. Activities

can be scheduled to occur faster or slower than every

second. Even if an app’s execution is data driven (.i.e. pends

for one or more data packets to start its execution) it is often

convenient to use the scheduler as a control mechanism for

scheduling the sending of time-based “housekeeping”

telemetry.

Kit Apps—The service apps in Figure 3 above are identified

as “kit” apps because they have been specifically designed

for the kit. The kit apps use text files for tables which

simplify the automation of integrating a new app into the

kit. The kit scheduler has not been qualified for flight, so a

user must transition from the kit SCH to the cFS SCH app.

The cFS only provides the CI_LAB and TO_LAB apps,

which are also not flight qualified. Therefore, the kit apps

do not create additional work since every user must develop

their own CI and TO apps.

Application Generation Tool—OpenSatKit provides an

application generation tool that creates a “hello world” app.

In addition to the FSW source code the tool generates an

initial unit test; an initial build test; a COSMOS command

definition file for the no operation and reset app commands;

a COSMOS housekeeping telemetry definition file; and an

installation script.

Automating App Kit Integration—All of the metadata

required to integrate an app into the kit has been identified.

If app suppliers can supply this data in a standard format

 7

then the process of integrating an application into the kit

could be automated.

An effort is underway that will accomplish this automation

goal. The CCSDS Spacecraft Onboard Interfaces Services

(SOIS) Electronic Data Sheet (EDS) defines a layered

description of a hardware or software component interface

in a machine-readable format[8]. EDS provides a standard

exchange mechanism for device and software interface

definitions. The cFS team is incorporating EDS developer

tools and specifications into the cFS Framework and

component specifications. Once this is complete the logistic

of implementing a distributed “app store” and automated

application integration into OpenSatKit can be

implemented.

System Integration and Verification

OpenSatKit provides multiple levels of support for verifying

the initial installation of the kit, adding applications, and

deploying the cFS to a target platform. The “Verify cFS

Config” button on the home page runs a test script that

verifies all of the preconfigured OpenSatKit apps are

integrated into the system. The script is designed using

COSMOS’s Test Runner framework so new applications

can easily be added and removed. This same script can be

run after the cFS is ported to a new platform to verify all of

the apps are still running as expected.

Test Suite Framework—An application functional test suite

framework is also included with the kit. This test suite also

uses COSMOS’ Test Runner framework. These tests are

intended to verify the functional requirements for each

application. The cFS functional tests have not been

translated to run within the COSMOS Ruby scripting

environment.

4. FUTURE WORK

After the NASA cFS team integrates EDS into the cFS tool

chain and artifacts, an application metadata model can be

defined. This definition should be maintained by the NASA

cFS CCB in order to maintain a cFS standard. Once the

application EDS model is defined OpenSatKit can be

updated to support automated application integration.

There are multiple efforts that could be done to improve the

verification and validation processes associated with porting

the cFS to a target platform. First, the kit currently includes

a benchmark app. The goal of this app is to allow a user to

run a consistent benchmark test suite on different targets.

The benchmark app is a prototype and needs to be matured.

Second, a platform test app can be written that would verify

the platform abstraction is functioning properly. Third, the

cFS functional tests should be translated to run within the

kit’s functional test suite framework.

5. SUMMARY

This paper described the cFS architecture and how the cFS

platform abstraction and application components are

independently configuration managed. The cFS open

architecture model requires either an end user or a

distributor to configure and integrate the components into an

operational system. The cFS is a very mature and highly

reliable FSW system that has been used on several NASA

Class B missions[5]. It would therefore be quite beneficial to

the aerospace community to make the cFS more accessible.

OpenSatKit was presented as a freely available open source

solution to this problem. It includes eight preconfigured cFS

applications and provides tools for creating and integrating

additional applications,

 ACKNOWLEDGEMENTS

The author acknowledges and thanks the cFS community

for its hard work and dedication towards maturing the cFS

by contributing ideas, applications, and tools. The author

would also like to thank the Johnson Space Center’s

Advanced Exploration Systems project for its financial

support of the cFS.

 REFERENCES

[1] National Aeronautics and Space Administration, Flight

Software Systems Branch, cFS Overview 2017,

http://cfs.gsfc.nasa.gov/Introduction.html

[2] OpenSatKit Download Site, 2017,

http://opensatkit.github.io

[3] Jonathan Wilmot, Lorraine Fesq, Dan Dvorak “Quality

Attributes for Mission Flight Software: A Reference for

Architects,” http://resources.sei.cmu.edu/library/asset-

view.cfm?assetid=454600.

[4] Herman Hartman, Chapter 3 University of Groningen

thesis “Software Product Line Engineering for Consumer

Electronics”.

[5] cFE Component Catalog, 2017,

http://coreflightsystem.org

[6] Ball Aerospace COSMOS Website, 2017,

http://cosmosrb.com/

[7] 42 Simulator Website, 2017 https://sourceforge.net/

projects/fortytwospacecraftsimulation/

[8] CCSDS XML Specifications for Electronic Data Sheets

for Onboard Devices and Software Components, 2015,

http://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID

=269

http://cfs.gsfc.nasa.gov/Introduction.html
http://opensatkit.github.io/
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=454600
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=454600
http://coreflightsystem.org/
http://cosmosrb.com/
https://sourceforge.net/projects/fortytwospacecraftsimulation/
https://sourceforge.net/projects/fortytwospacecraftsimulation/
http://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=269
http://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=269

 8

BIOGRAPHY

David McComas received a M.S. in

Computer Engineering from the Johns

Hopkins University Applied Physics

Lab, Laurel in 1991. He has been with

the NASA GSFC for 32 years. He spent

the majority of his career working on

flight software FSW for in-house

spacecraft and instruments in various

roles including developer, tester,

technical team lead, and product development lead. These

roles included both Command and Data Handling

(C&DH) FSW, Guidance Navigation and Control

(GN&C) FSW, and simulator development. He currently

serves as the cFS Program Manager.

